
Astronomy 501: Radiative Processes

Lecture 5

Aug 31, 2022

Announcements:

• Problem Set 1 posted on Canvas, due Friday 5pm

• Office hours: instructor–after class today, or by appointment

TA: Tomorrow 11:30-12:30

• today: meet in person!

please please mask up!

Last time: thanks for the great questions and discussion!

ingredients of radiative transfer

• free space Q: meaning? Iν result? significance?

• emission Q: how quantified? physical origin?

• absorption Q: how quantified? physical origin?

the mighty equation of radiation transfer

Q: what is it?

1



Special Case: Sinks but no Sources

if absorption only, no sources: jν = 0

dIν

ds
= −ανIν (1)

and so on a sightline from s0 to s

Iν(s) = Iν(s0) e
−
∫ s
s0

αν ds′
(2)

• intensity decrement is exponential!

• exponent depends on line integral of absorption coefficient

useful to define optical depth via dτν ≡ αν ds

τν(s) =
∫ s

s0
αν ds′ =

∫ s

s0

ds′

ℓmfp,ν
(3)

and thus for absorption only Iν(s) = Iν(s0)e
−τν(s)
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Optical Depth

optical depth, in terms of cross section

τν(s) =
∫ s

s0
na σν ds′ =

∫ s

s0

ds′

ℓmfp,ν
(4)

= number of mean free paths (5)

optical depth counts mean free paths along sightline

i.e., typical number of absorption events

Limiting cases:

•τν ≪ 1: optically thin

absorption unlikely → transparent

•τν ≫ 1: optically thick

absorption overwhelmingly likely → opaque
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Column Density

Note “separation of variables” in optical depth

τν(s) = σν︸︷︷︸

∫ s

s0
na(s

′) ds′

︸ ︷︷ ︸

microphysics astrophysics

(6)

From observations, can (sometimes) infer τν Q: how?

but cross section σν fixed by absorption microphysics

i.e., by theory and/or lab data

absorber astrophysics controlled by column density

Na(s) ≡
∫ s

s0
na(s

′) ds′ (7)

line integral of number density over entire line of sight s

cgs units [Na] = [cm−2]

Q: what does column density represent physically?
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column density

Na(s) ≡
∫ s

s0
na ds′

so τν = σνNa

0

s

s

ds

• column density is projection of 3-D absorber density

onto 2-D sky, “collapsing” the sightline

“cosmic roadkill”

• if source is a slab ⊥ to sightline,

then Na is absorber surface density

• if source is multiple slabs ⊥ to sightline,

then Na sums surface density of all slabs

Q: from Na, how to recover 3-D density na?
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Radiation Transfer Equation, Formal Solution

equation of transfer

dIν

ds
= −ανIν + jν (8)

divide by αν and rewrite

in terms of optical depth dτν = ανds

dIν

dτν
= −Iν + Sν (9)

with the source function

Sν =
jν

αν
=

jν

naσν
(10)

Q: source function dimensions?
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Source Function

Sν = jν/αν has dimensions of surface brightness

What does it represent physically?

consider the case where the same matter

is responsible for both emission and absorption; then:

• αν = nσν, with n the particle number density

• jν = n dLν/dΩ, with dLν/dΩ the specific power

emitted per particle and per solid angle

and thus we have

Sν =
dLν/dΩ

σν
(11)

specific power per unit effective area and solid angle

→ effective surface brightness of each particle!

spoiler alert: Sν encodes emission vs absorption relation

ultimately set by quantum mechanical symmetries

e.g., time reversal invariance, “detailed balance”
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Radiative Transfer Equation: Formal Solution

dIν

dτν
= −Iν + Sν (12)

If emission independent of Iν (not always true! Q: why?)

Then can formally solve

Write Iν = Φνe−τν, i.e., use integrating factor e−τν, so

dIν

ds
=

d(Φνe−τν)

dτν
= e−τνdΦν

dτν
−Φνe

−τν (13)

= −Iν + Sν = −Φνe
−τν + Sν (14)

and so we have
dΦν

dτν
= e+τνSν(τν) (15)

and thus

Φν(s) = Φν(0) +

∫ τν

0
eτ

′
ν Sν(τ

′
ν) dτ ′ν (16)
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Φν(s) = Φν(0) +

∫ τν(s)

0
eτ

′
ν Sν(τ

′
ν) dτ ′ν (17)

and then

Iν(s) = Φν(s) e−τν(s) (18)

= Iν(0) e−τν(s) +

∫ τν(s)

0
e−[τν(s)−τ ′ν] Sν(τ

′
ν) dτ ′ν (19)

in terms of original variables

Iν(s) = Iν(0)e
−τν(s) +

∫ s

s0
e−[τν(s)−τν(s′)] jν(τ

′
ν) ds′

Q: what strikes you about these solutions?9



Formal solution to transfer equation:

Iν(s) = Iν(0) e−τν(s) +
∫ τν(s)

0
e−[τν(s)−τ ′ν] Sν(τ

′
ν) dτ ′ν (20)

in terms of original variables

Iν(s) = Iν(0)e
−τν(s) +

∫ s

s0
e−[τν(s)−τν(s′)] jν(s

′) ds′

• first term:

initial (“background”) intensity degraded by absorption

• second term:

sources along column add intensity

but optical depth suppresses sources with τν >∼ 1

1
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Formal Solution: Special Cases

For spatially constant source function Sν = jν/αν:

Iν(s) = e−τν(s)Iν(0) + Sν

∫ τν(s)

0
e−[τν(s)−τ ′ν] dτ ′ν (21)

= e−τν(s)Iν(0) +
(

1− e−τν(s)
)

Sν (22)

• optically thin: τν ≪ 1

Iν ≈ (1− τν)Iν(0) + τνSν

• optically thick: τν ≫ 1

Iν → Sν

⇒ optically thick intensity is source function!

what’s going on? rewrite:

dIν

ds
= −

1

ℓmfp,ν
(Iν − Sν) (23)

Q: what happens if Iν < Sν? if Iν > Sν?

Q: lesson? characteristic scales?
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Radiation Transfer as Relaxation

dIν

ds
= −

1

ℓmfp,ν
(Iν − Sν) (24)

• if Iν<Sν, then dIν/ds>0:

→ intensity increases along path

• if Iν>Sν, intensity decreases

equation is “self regulating!”

Iν “relaxes” to “attractor” Sν

and characteristic lengthscale for relaxation is mean free path!

recall Sν = ℓmfp,ν jν: this is “source-only” result

for sightline pathlength s = ℓmfp,ν

1
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Now imagine:

• optically thin foreground source

• and (possibly) a background source

sδ

foreground source

source
background

Q: What do we see if no background? if there is one?

Q: Everyday examples?1
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An Optically Thin Source

•τν ≪ 1: optically thin = transparent

• consider thin foreground source jν

illuminated by background Iν(0)

Iν ≈ (1− τν) Iν(0) + jν δs

sδ

foreground source

source
background

• physical interpretation: observed intensity combines

slightly diminished background emission

+ foreground source along sightline

• sky view: foreground object with background shining through

• all of foreground source volume is projected on sky!

useful for probing source interior and global properties

Everyday examples: air, thin smoke ... but these are really scattering

Q: compare/contrast case of optically thick foreground source:

physical meaning? what see? what learn?
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An Optical Thick Source

•τν ≫ 1: optically thick = opaque

Iν → Sν = jν ℓmfp,ν source
background

foreground source

optically thick intensity is source function!

• sky view: source surface, if solid

or outermost skin to depth ℓmfp,ν

• measure surface Sν

• no information about interior or background

Everyday examples: most solid objects, deep/muddy water

Note: αν and thus τν spectral dependence can mean

the same object can be thin at some ν and thick at others!
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Optical Depth and Astrophysical Objects

Q: examples of resolved optically thick astronomical objects?

Q: examples of resolved optically thin astronomical objects?

Q: Observe and interpret:

www: supernova remnants in optical

www: Orion nebula in optical

www: multiwavelength dark cloud Barnard 68

www: galaxies

www: all sky: optical, microwave, near infrared

1
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Blackbody Radiation

1
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Radiation and Thermodynamics

consider an enclosure (“box 1”)

in thermodynamic equilibrium at temperature T

the matter in box 1

• is in random thermal motion

• will absorb and emit radiation

details of which depends on

the details of box material and geometry

• but equilibrium

→ radiation field in box doesn’t change

Iν,1T

box 1

open little hole: escaping radiation has intensity Iν,11
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now add another enclosure (“box 2”), also at temperature T

but made of different material

IνIν

filter

T T

box 1 box 2

,2
,1

separate boxes by filter passing only frequency ν

radiation from each box incident on screen

Q: imagine Iν,1 > Iν,2; what happens?

Q: lesson?

1
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Blackbody Radiation

if both boxes at same T ⇒ no net energy transfer

but this requires Iν,1 = Iν,2 and so the radiation is:

• independent of the composition of the box

• a universal function of T

• blackbody radiation with intensity Iblackbodyν ≡ Bν(T)

Spoiler alert (useful for PS1): blackbody radiation

Bν(T) =
2h

c2
ν3

ehν/kT − 1
(25)

with h = Planck’s constant, k = Boltzmann’s constant

in wavelength space

Bλ(T) = 2hc2
λ−5

ehc/λkT − 1
(26)

2
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blackbody integrated intensity:

B(T) =
∫

Bν(T) dν =
∫

Bλ(T) dλ (27)

=
2π4

15

k4T4

c3h3
=

σSB
π

T4 =
c

4π
aT4 (28)

blackbody flux

Fν(T) = πBν(T) =
2πh

c2
ν3

ehν/kT − 1
(29)

F(T) = πB(T) ≡ σSBT
4 =

2π5

15

k4T4

c2h3
(30)

defines Stefan-Boltzmann constant

σSB =
2π5

15

k4

c2h3
= 5.670× 10−5 erg cm−2 s−1 K−4 (31)

Q: to order of magnitude: integrated number density?
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Note: blackbody quantities determined entirely by T

no adjustable parameters!

mean number density: dimensions [n] = [length−3]

can only depend on T , and physical constants h, c, k

can form only one length: [hc/kT ] = [length]

→ expect n ∼ (hc/kT)3

photon number density

nν(T) =
4πBν(T)

hcν
=

8π

c3
ν2

ehν/kT − 1
(32)

n(T) = 16πζ(3)

(
kT

hc

)3

(33)

where ζ(3) = 1+ 1/23 +1/33 +1/43 + · · · = 1.2020569 . . .

Q: implications–what does and doesn’t n depend on?
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blackbody photon number density

n(T) = 16πζ(3)

(
kT

hc

)3

(34)

i.e., n ∝ T3

So if temperatures changes, photon number changes

blackbody photon number is not conserved

photons massless → can always make more!

if heat up, photon number increases

and spectrum relaxes to blackbody form

blackbody energy density?

to order of magnitude, expect u ∼ nkT ∼ (kT)4/(hc)3

2
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integrated energy density

uν(T) =
4πBν(T)

c
=

8πh

c3
ν3

ehν/kT − 1
(35)

u(T) =
4πB(T)

c
=

8π5

15

k4T4

c3h3
(36)

≡ aT4 =
4σSB

c
T4 (37)

defines Stefan-Boltzmann radiation density constant a = 4σSB/c

mean photon energy:
only one way to form an energy

→ expect 〈E〉 ∼ kT

exact result:

〈E〉 ≡
u(T)

n(T)
(38)

=
π4

30ζ(3)
kT = 2.701 kT (39)
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Blackbody Spectral Properties
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Wien’s Displacement Laws

for blackbodies,

specific intensity, and flux, and energy density have

Iν ∝ Fν ∝ uν ∝
ν3

ehν/kT − 1
(40)

at fixed T , these spectra all peak at same frequency

maximum when x = hν/kT satisfies x = 3(1− e−x)

→ xmax = 2.821439 . . ., which gives

νmax

T
= xmax

kT

h
= 5.88× 1010 Hz K−1 (41)

i.e., νmax ∝ T , as expected from dimensional analysis
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in wavelength space, Iλ ∝ λ−5/(ehc/λkT − 1)

maximum when y = hc/λkT satisfies y = 5(1− e−y)

→ ymax = 4.9651 . . ., which gives

λmax T =
1

ymax

hc

k
= 0.290 cm K (42)

i.e., λmax ∝ 1/T , as expected from dimensional analysis

both versions of Wien’s Law measure T : color temperature

crucial gotcha: beware! λmax 6= c/νmax

Q: why?
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