Astronomy 501: Radiative Processes Lecture 5 Aug 31, 2022

Announcements:

- Problem Set 1 posted on Canvas, due Friday 5pm
- Office hours: instructor–after class today, or by appointment TA: Tomorrow 11:30-12:30
- today: meet in person! please please mask up!

Last time: thanks for the great questions and discussion! ingredients of radiative transfer

- free space Q: meaning? I_{ν} result? significance?
- emission *Q: how quantified? physical origin?*
- absorption *Q: how quantified? physical origin?* the mighty equation of radiation transfer *Q: what is it?*

Special Case: Sinks but no Sources

if absorption only, no sources: $j_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \tag{1}$$

and so on a sightline from s_0 to s

$$I_{\nu}(s) = I_{\nu}(s_0) \ e^{-\int_{s_0}^s \alpha_{\nu} \ ds'}$$
(2)

- intensity *decrement* is *exponential*!
- exponent depends on line integral of absorption coefficient

useful to define **optical depth** via $d\tau_{\nu} \equiv \alpha_{\nu} ds$

$$\tau_{\nu}(s) = \int_{s_0}^{s} \alpha_{\nu} \, ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{mfp,\nu}}$$
(3)

Ν

and thus for absorption only $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}(s)}$

Optical Depth

optical depth, in terms of cross section

$$\tau_{\nu}(s) = \int_{s_0}^{s} n_a \sigma_{\nu} ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{mfp,\nu}}$$
(4)
= number of mean free paths (5)

optical depth counts mean free paths along sightline i.e., typical number of absorption events

Limiting cases: • $\tau_{\nu} \ll 1$: optically thin absorption unlikely \rightarrow transparent

 $_{\omega}$ •τ_ν \gg 1: optically thick absorption overwhelmingly likely \rightarrow opaque

Column Density

Note "separation of variables" in optical depth

$$\tau_{\nu}(s) = \underbrace{\sigma_{\nu}}_{\text{microphysics}} \underbrace{\int_{s_0}^{s} n_a(s') \, ds'}_{\text{astrophysics}}$$

From observations, can (sometimes) infer τ_{ν} Q: how? but cross section σ_{ν} fixed by absorption microphysics i.e., by theory and/or lab data

absorber astrophysics controlled by column density

$$N_a(s) \equiv \int_{s_0}^s n_a(s') \ ds' \tag{7}$$

(6)

line integral of number density over entire line of sight s cgs units $[N_a] = [cm^{-2}]$

Q: what does column density represent physically?

column density

$$N_a(s) \equiv \int_{s_0}^s n_{\mathsf{a}} \; ds'$$

so $\tau_{\nu} = \sigma_{\nu} N_{a}$

- column density is projection of 3-D absorber density onto 2-D sky, "collapsing" the sightline "cosmic roadkill"
- if source is a slab \perp to sightline, then N_a is absorber surface density
- if source is multiple slabs \perp to sightline, then N_a sums surface density of all slabs

СЛ

Q: from N_a , how to recover 3-D density n_a ?

Radiation Transfer Equation, Formal Solution

equation of transfer

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{8}$$

divide by $lpha_
u$ and rewrite

in terms of optical depth $d\tau_{\nu} = \alpha_{\nu} ds$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{9}$$

with the source function

σ

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = \frac{j_{\nu}}{n_{\rm a}\sigma_{\nu}} \tag{10}$$

Q: source function dimensions?

Source Function

 $S_{\nu} = j_{\nu}/\alpha_{\nu}$ has dimensions of surface brightness What does it represent physically?

consider the case where the *same* matter is responsible for both emission and absorption; then:

- $\alpha_{\nu} = n\sigma_{\nu}$, with *n* the particle number density
- $j_{\nu} = n dL_{\nu}/d\Omega$, with $dL_{\nu}/d\Omega$ the specific power emitted *per particle* and per solid angle and thus we have

$$S_{\nu} = \frac{dL_{\nu}/d\Omega}{\sigma_{\nu}} \tag{11}$$

specific power per unit effective area and solid angle \rightarrow effective surface brightness of each particle!

spoiler alert: S_{ν} encodes emission vs absorption relation ultimately set by quantum mechanical symmetries e.g., time reversal invariance, "detailed balance"

Radiative Transfer Equation: Formal Solution

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{12}$$

If emission independent of I_{ν} (not always true! Q: why?) Then can formally solve

Write $I_{\nu} = \Phi_{\nu} e^{-\tau_{\nu}}$, i.e., use *integrating factor* $e^{-\tau_{\nu}}$, so

$$\frac{dI_{\nu}}{ds} = \frac{d(\Phi_{\nu}e^{-\tau_{\nu}})}{d\tau_{\nu}} = e^{-\tau_{\nu}}\frac{d\Phi_{\nu}}{d\tau_{\nu}} - \Phi_{\nu}e^{-\tau_{\nu}}$$
(13)

$$= -I_{\nu} + S_{\nu} = -\Phi_{\nu}e^{-\tau_{\nu}} + S_{\nu}$$
(14)

and so we have

$$\frac{d\Phi_{\nu}}{d\tau_{\nu}} = e^{+\tau_{\nu}} S_{\nu}(\tau_{\nu}) \tag{15}$$

 $_{\infty}$ and thus

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}} e^{\tau_{\nu}'} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'$$
(16)

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}(s)} e^{\tau'_{\nu}} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$$
(17)

and then

$$I_{\nu}(s) = \Phi_{\nu}(s) e^{-\tau_{\nu}(s)}$$
(18)
= $I_{\nu}(0) e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau'_{\nu}]} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$ (19)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(\tau_{\nu}') ds'$$

Q: what strikes you about these solutions?

Formal solution to transfer equation:

$$I_{\nu}(s) = I_{\nu}(0) \ e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} \ S_{\nu}(\tau_{\nu}') \ d\tau_{\nu}'$$
(20)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(s') ds'$$

• first term:

initial ("background") intensity degraded by absorption

• second term:

sources along column add intensity but optical depth suppresses sources with $au_
u\gtrsim 1$

Formal Solution: Special Cases

For spatially *constant* source function $S_{\nu} = j_{\nu}/\alpha_{\nu}$:

$$I_{\nu}(s) = e^{-\tau_{\nu}(s)}I_{\nu}(0) + S_{\nu}\int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} d\tau_{\nu}' \qquad (21)$$
$$= e^{-\tau_{\nu}(s)}I_{\nu}(0) + (1 - e^{-\tau_{\nu}(s)}) S_{\nu} \qquad (22)$$

- optically thin: $\tau_{\nu} \ll 1$ $I_{\nu} \approx (1 - \tau_{\nu})I_{\nu}(0) + \tau_{\nu}S_{\nu}$
- optically thick: $au_{
 u} \gg 1$ $I_{
 u} \rightarrow S_{
 u}$

 \Rightarrow optically thick intensity is source function!

what's going on? rewrite:

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{\text{mfp},\nu}} (I_{\nu} - S_{\nu})$$
(23)

- Q: what happens if $I_{\nu} < S_{\nu}$? if $I_{\nu} > S_{\nu}$?
- Q: lesson? characteristic scales?

Radiation Transfer as Relaxation

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{mfp,\nu}} (I_{\nu} - S_{\nu})$$
(24)

• if $I_{\nu} < S_{\nu}$, then $dI_{\nu}/ds > 0$:

 \rightarrow intensity *increases* along path

• if $I_{\nu} > S_{\nu}$, intensity *decreases*

```
equation is "self regulating!" I_{\nu} "relaxes" to "attractor" S_{\nu}
```

12

and characteristic lengthscale for relaxation is mean free path! recall $S_{\nu} = \ell_{mfp,\nu} j_{\nu}$: this is "source-only" result for sightline pathlength $s = \ell_{mfp,\nu}$ Now imagine:

- *optically thin* foreground source
- and (possibly) a background source

Q: What do we see if no background? if there is one?

Q: Everyday examples?

An Optically Thin Source

- • $\tau_{\nu} \ll 1$: optically thin = transparent
- consider thin foreground source j_{ν} illuminated by background $I_{\nu}(0)$

$I_{\nu} \approx (1 - \tau_{\nu}) I_{\nu}(0) + j_{\nu} \delta s$

- physical interpretation: observed intensity combines slightly diminished background emission
 + foreground source along sightline
- sky view: foreground object with background shining through
- *all* of foreground source volume is projected on sky! useful for probing source interior and global properties

Everyday examples: air, thin smoke ... but these are really scattering

[↓] Q: compare/contrast case of optically thick foreground source: physical meaning? what see? what learn?

An Optical Thick Source

• $\tau_{\nu} \gg 1$: optically thick = opaque

 $I_{\nu} \to S_{\nu} = j_{\nu} \ell_{\mathsf{mfp},\nu}$

optically thick intensity is source function!

- sky view: source surface, if solid or outermost skin to depth ℓ_{mfp,ν}
- measure surface S_{ν}
- *no information* about interior or background

Everyday examples: most solid objects, deep/muddy water

<u>1</u>5

Note: α_{ν} and thus τ_{ν} spectral dependence can mean the same object can be thin at some ν and thick at others!

Optical Depth and Astrophysical Objects

Q: examples of resolved optically thick astronomical objects?

Q: examples of resolved optically thin astronomical objects?

Q: Observe and interpret:

- www: supernova remnants in optical
- www: Orion nebula in optical
- www: multiwavelength dark cloud Barnard 68
- www: galaxies
- www: all sky: optical, microwave, near infrared

Blackbody Radiation

Radiation and Thermodynamics

consider an enclosure ("box 1") in thermodynamic equilibrium at temperature T

the matter in box 1

- is in random thermal motion
- will absorb and emit radiation details of which depends on the details of box material and geometry
- but equilibrium
 - \rightarrow radiation field in box doesn't change

open little hole: escaping radiation has intensity $I_{
u,1}$

now add another enclosure ("box 2"), also at temperature T but made of *different material*

separate boxes by filter passing only frequency ν radiation from each box incident on screen Q: imagine $I_{\nu,1} > I_{\nu,2}$; what happens?

Q: lesson?

Blackbody Radiation

if both boxes at same $T \Rightarrow$ no net energy transfer but this requires $I_{\nu,1} = I_{\nu,2}$ and so the radiation is:

- independent of the composition of the box
- a universal function of T
- blackbody radiation with intensity $I_{\nu}^{\text{blackbody}} \equiv B_{\nu}(T)$

Spoiler alert (useful for PS1): blackbody radiation

$$B_{\nu}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(25)

with h = Planck's constant, k = Boltzmann's constant

in wavelength space

$$B_{\lambda}(T) = 2hc^2 \frac{\lambda^{-5}}{e^{hc/\lambda kT} - 1}$$
(26)

blackbody integrated intensity:

$$B(T) = \int B_{\nu}(T) \, d\nu = \int B_{\lambda}(T) \, d\lambda \tag{27}$$

$$= \frac{2\pi^4}{15} \frac{k^4 T^4}{c^3 h^3} = \frac{\sigma_{\text{SB}}}{\pi} T^4 = \frac{c}{4\pi} a T^4$$
(28)

blackbody flux

$$F_{\nu}(T) = \pi B_{\nu}(T) = \frac{2\pi h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(29)

$$F(T) = \pi B(T) \equiv \sigma_{\text{SB}} T^4 = \frac{2\pi^5 k^4 T^4}{15 c^2 h^3}$$
(30)

defines Stefan-Boltzmann constant

$$\sigma_{\rm SB} = \frac{2\pi^5}{15} \frac{k^4}{c^2 h^3} = 5.670 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ K}^{-4}$$
(31)

21

Q: to order of magnitude: integrated number density?

Note: *blackbody quantities determined entirely by T* no adjustable parameters!

mean number density: dimensions $[n] = [\text{length}^{-3}]$ can only depend on T, and physical constants h, c, kcan form only one length: [hc/kT] = [length] $\rightarrow \text{expect } n \sim (hc/kT)^3$

photon number density

$$n_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{hc\nu} = \frac{8\pi}{c^3} \frac{\nu^2}{e^{h\nu/kT} - 1}$$
(32)
$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3$$
(33)
where $\zeta(3) = 1 + 1/2^3 + 1/3^3 + 1/4^3 + \dots = 1.2020569\dots$

22

Q: implications-what does and doesn't n depend on?

blackbody photon number density

$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3 \tag{34}$$

i.e., $n \propto T^3$

So if temperatures changes, photon number changes blackbody photon number is not conserved photons massless \rightarrow can always make more!

if heat up, photon number increases and spectrum relaxes to blackbody form

blackbody energy density?

 $\stackrel{\text{\tiny $\&$}}{\sim}$ to order of magnitude, expect $u \sim nkT \sim (kT)^4/(hc)^3$

integrated energy density

$$u_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{c} = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(35)
$$u(T) = \frac{4\pi B(T)}{c} = \frac{8\pi^5 k^4 T^4}{15 c^3 h^3}$$
(36)
$$\equiv aT^4 = \frac{4\sigma_{\text{SB}}}{c} T^4$$
(37)

defines Stefan-Boltzmann radiation density constant $a = 4\sigma_{SB}/c$

mean photon energy: only one way to form an energy \rightarrow expect $\langle E\rangle \sim kT$

exact result:

$$\langle E \rangle \equiv \frac{u(T)}{n(T)}$$
(38)
= $\frac{\pi^4}{30\zeta(3)} kT = 2.701 kT$ (39)

Blackbody Spectral Properties

plots of B_{ν} vs ν Q: what strikes you?

Wien's Displacement Laws

for blackbodies,

26

specific intensity, and flux, and energy density have

$$I_{\nu} \propto F_{\nu} \propto u_{\nu} \propto \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(40)

at fixed T, these spectra all peak at same frequency

maximum when $x = h\nu/kT$ satisfies $x = 3(1 - e^{-x})$ $\rightarrow x_{\text{max}} = 2.821439...$, which gives

$$\frac{\nu_{\rm max}}{T} = x_{\rm max} \frac{kT}{h} = 5.88 \times 10^{10} \text{ Hz K}^{-1}$$
(41)
i.e., $\nu_{\rm max} \propto T$, as expected from dimensional analysis

in wavelength space, $I_\lambda \propto \lambda^{-5}/(e^{hc/\lambda kT}-1)$

maximum when $y = hc/\lambda kT$ satisfies $y = 5(1 - e^{-y})$ $\rightarrow y_{max} = 4.9651...$, which gives

$$\lambda_{\max} T = \frac{1}{y_{\max}} \frac{hc}{k} = 0.290 \text{ cm K}$$
(42)

i.e., $\lambda_{\max} \propto 1/T$, as expected from dimensional analysis

both versions of Wien's Law measure T: color temperature

crucial gotcha: **beware!** $\lambda_{max} \neq c/\nu_{max}$ *Q: why?*