
Astronomy 501: Radiative Processes

Lecture 6

Sept 2, 2022

Announcements:

• Problem Set 1 due today on Canvas at 5pm

• Problem Set 2 out today, due next Friday Sept 9

• Thanks to all for making the most of face-to-face!

Please keep up the great discussion!

• Planet imaging is not just for homework

www: first JWST detection

Last time:

Optical thickness and imaging

Q: what defines optical thickness? thin/thick distinction?

Q: what do you see when looking at an optically thick source?

Began blackbody radiation:

Q: Why is Bν universal? what does Bν depend on?
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optical depth

τν(s) = σν︸︷︷︸

∫ s

s0
na(s

′) ds′

︸ ︷︷ ︸

microphysics astrophysics

(1)

Limiting cases:

•τν ≪ 1: optically thin

absorption unlikely → transparent

see entire source volume, projected on sky

•τν ≫ 1: optically thick

absorption overwhelmingly likely → opaque

see source functionSν = jν/αν of last few mean free paths

absorber astrophysics controlled by column density

Na(s) ≡
∫ s

s0
na(s

′) ds′ (2)

line integral of number density over entire line of sight s
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Blackbody Radiation

useful to define idealized substance: blackbody

• object in thermodynamic equilibrium at temperature T

• absorbs all radiation at all ν, emits according to T

• why radiate? constituent particles in thermal motion

collisions/interactions lead to emission (more on this soon!)

two boxes at same T ⇒ no net energy transfer

but this requires Iν,1 = Iν,2 and so the radiation is:

• independent of the composition of the box

• a universal function of T

• isotropic Q: why?

IνIν

filter

T T

box 1 box 2

,2
,1

• blackbody radiation with intensity Iblackbodyν ≡ Bν(T)3



Radiation Thermodynamics

experiment and everyday life show: hot objects glow

• radiation participates in energy exchange, is a form of heat

• we must include radiation in thermodynamics!

We have seen: radiation has both an energy density u

and a pressure P that depend on spectrum

blackbody radiation: Bν(T) depends only only T

• so we should have u(T) and P(T)

• and blackbody radiation is isotropic, so P = u/3

In Director’s Cut Extras today:

using P = u/3 equation of state in thermodynamic laws gives

u(T) ∝ T4 (3)

This is Huge! Q: why?
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can find radiation energy density

just from thermodynamic considerations!

• u(T) ∝ T4: strong T dependence!

• can write

u(T) = a T4 (4)

where a is the “radiation constant”

value not determined by thermodynamics alone

• also get total intensity and flux!

B(T) =
ac

4π
T4 (5)

F(T) = πB(T) =
ac

4
T4 ≡ σT4 (6)

same T4 scaling for total intensity and flux
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The Limits of Thermodynamics

We have seen:

blackbody quantities fixed entirely by T

• no adjustable parameters!

• blackbody energy density, pressure independent of V

unlike nonrelativistic ideal gas! Pgas = NkT/V = ngaskT

• in Extras below: blackbody entropy density s(T) = 4/3 aT3

This is great! But...

• thermodynamics alone does’t give radiation constant a

nor the spectral shape of Bν

• to find Bν need a microscopic picture of photons

from statistical mechanics
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Statistical Mechanics in a Nutshell

classically, phase space (~x, ~p)

completely describes particle state

Q: phase space lifestyle of single classical 1-D free body?

of single 1-D harmonic oscillator?

Q: a swarm of free bodies? oscillators?

but quantum mechanics → uncertainty ∆x∆p ≥ h̄/2

semi-classically:

can show that a quantum particle must occupy

a minimum phase space “volume”

(dx dpx)(dy dpy)(dz dpz) = h3 = (2πh̄)3

per quantum state of fixed ~p
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Distribution Function

define “occupation number” or “distribution function” f(~x, ~p):

number of particles in each phase space “cell”

Q: f range for fermions? bosons?

Q: what is f for one classical particle? many classical particles?

Given distribution function, total number of particles is

dN = gf(~x, ~p)
d3~x d3~p

h3
(7)

where g is # internal states: spin/helicity, excitation

Q: g(e−)? g(γ)? g(p)?

particle phase space occupation f determines bulk properties

Q: how? Hint–what’s # particles per unit spatial volume?
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Fermions: 0 ≤ f ≤ 1 (Pauli)

Bosons: f ≥ 0

internal degrees of freedom
electrons: spin-1/2 gives g(e−) = 2s(e−) + 1 = 2
protons: also spin-1/2, g(p) = 2
photons: g(γ) = 2 (polarizations)

Particle phase space occupation f determines bulk properties

number density

n(~x) =
d3N

d3x
=

g

h3

∫

d3~p f(~p, ~x) (8)

Q: this expressions is general–specialize to photons?
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for photons E = cp = hν

so d3p = p2 dp dΩ = h3/c3 ν2 dν dΩ

photon number density is thus

dn =
2

c3
ν2 f(ν) dν dΩ (9)

and thus we have

dnν

dΩ
=

dn

dν dΩ
=

2

c3
ν2 f(ν) (10)

thus f gives a general, fundamental description of photon fields

the challenge is to find the physics that determines f

→ spoiler alert: you have already seen a version of it!

but will see it again as the Boltzmann equation!

Note: distribution function f(ν) and specific intensity Iν
are equivalent and interchangeable descriptions

Q: why? how do we get Iν from f(ν)?
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Distribution Function and Observables

distribution function f(ν) is related to photon number via

dnν

dΩ
=

dN

dV dν dΩ
=

2

c3
ν2 f(ν) (11)

but we found that photon specific intensity is related to

specific number density via

Iν = energy flux per solid angle

= energy× speed× number density per solid angle

= hν c
dnν

dΩ
(12)

but this means that the two are related via

Iν =
2h

c2
ν3 f(ν) (13)

so Iν really is a measure of distribution function f !
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Equilibrium Occupation Numbers

So far, totally general description of photon fields

no assumption of thermodynamic equilibrium

in thermodynamic equilibrium at T , the distribution function

is also the occupation number

i.e., average number of photons with frequency ν

f(ν, T) =
1

ehν/kT − 1
(14)

see derivation in today’s Director’s Cut Extras

Q: at fixed T , for which ν is f large? small?

Q: sketch of f(ν)?

Q: what does this all mean physically?

Q: when is f zero?

Q: in which regime do we expect classical behavior? quantum?
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Blackbody Radiation Properties

Using the blackbody distribution function, we define

Bν(T) ≡ Iν(T) =
2h

c2
ν3 f(ν, T) (15)

and because f(ν, T) = 1/(ehν/kT − 1), we have

Bν(T) =
2h

c2
ν3

ehν/kT − 1
(16)

with h = Planck’s constant, k = Boltzmann’s constant

in wavelength space

Bλ(T) = 2hc2
λ−5

ehc/λkT − 1
(17)1
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blackbody integrated intensity:

B(T) =

∫

Bν(T) dν =

∫

Bλ(T) dλ (18)

=
2π4

15

k4T4

c3h3
=

σ

π
T4 =

c

4π
aT4 (19)

blackbody specific and total/integrated flux

Fν(T) = πBν(T) =
2πh

c2
ν3

ehν/kT − 1
(20)

F(T) = πB(T) ≡ σT4 =
2π5

15

k4T4

c2h3
(21)

defines Stefan-Boltzmann constant

σ =
2π5

15

k4

c2h3
= 5.670× 10−5 erg cm−2 s−1 K−4 (22)1
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spectral and total/integrated energy density

uν(T) =
4πBν(T)

c
=

8πh

c3
ν3

ehν/kT − 1
(23)

u(T) =
4πB(T)

c
=

8π5

15

k4

c3h3
T4 (24)

≡ aT4 =
4σ

c
T4 (25)

and now we find the value of a!

Stefan-Boltzmann radiation density constant

a =
4σ

c
= 7.56× 10−15 erg cm−3 K−4 (26)

at last!

Q: to order of magnitude: integrated number density?
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mean number density: dimensions [n] = [length−3]

can only depend on T , and physical constants h, c, k

can form only one length: [hc/kT ] = [length]

→ expect n ∼ (hc/kT)3

photon number density

nν(T) =
4πBν(T)

hcν
=

8π

c3
ν2

ehν/kT − 1
(27)

n(T) = 16πζ(3)

(
kT

hc

)3

(28)

where ζ(3) = 1+ 1/23 +1/33 +1/43 + · · · = 1.2020569 . . .

Q: implications?1
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blackbody photon number density

n(T) = 16πζ(3)

(
kT

hc

)3

(29)

i.e., n ∝ T3

So if temperatures changes, photon number changes

blackbody photon number is not conserved

photons massless → can always make more!

if heat up, photon number increases

and spectrum relaxes to blackbody form

alternatively: given energy density u ∼ T4

and mean photon energy 〈E〉 ∼ kT

number density must be n ∼ T3

1
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Blackbody Spectral Properties
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Blackbody Spectral Properties

at fixed ν, occupation number ∂Tf(ν, T) > 0

→ at larger T : larger f and so more photons

→ also more specific intensity, flux, energy density

→ slogan: “blackbody spectra at different T never cross”

natural energy scale kT , sets two limits

Rayleigh-Jeans limit hν ≪ kT

occupation number f(ν) → kT/hν ≫ 1

many photons, expect classical behavior

specific intensity Iν = 2h/c2 ν3f → 2kT ν2/c2

• Iν ∝ ν2: power-law scaling

• h does not appear in Iν: classical behavior!
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Wien limit hν ≫ kT

occupation number f(ν) → e−hν/kT ≪ 1

photon starved: thermal bath cannot “pay energy cost”

specific intensity Iν → 2h ν3/c2 e−hν/kT

• exponentially damped due to quantum effects
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Director’s Cut Extras

2
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Thermodynamics Recap

First Law of Thermodynamics: heat is work!

adding heat energy dQ to system changes

system energy U and/or pressure P :

dQ = dU + pdV (30)

Second Law of Thermodynamics: heat is entropy!

T dS = dQ (31)

together

T dS = dU + P dV (32)

and thus entropy S = S(T, V ) obeys

dS =
dU

T
+

P

T
dV (33)

2
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entropy S = S(T, V ) obeys

dS =
dU

T
+

P

T
dV (34)

and thus we have

∂TS =
∂TU

T
(35)

∂V S =
∂V U + P

T
(36)

which means

∂V ∂TS =
∂V ∂TU

T
(37)

∂T∂V S =
∂T∂V U

T
−

∂V U

T2
+ ∂T

(
P

T

)

(38)

but mix partial derivatives equal, e.g., ∂V ∂TS = ∂T∂V S,

and note that ∂V U |T = u energy density, so

u = T2 ∂T

(
P

T

)

(39)

2
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Radiation Thermodynamics

general thermodynamic considerations give:

u = T2 ∂T

(
P

T

)

(40)

now specialize to radiation: P = P(T) = u(T)/3

T
d

dT

(
u

T

)

= 3
u

T
(41)

which gives

d(u/T)

u/T
= 3

dT

T
(42)

ln

(
u

T

)

= 3 ln(T) + ln(a) (43)

u(T) = a T4 (44)

This is Huge! Q: why?
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Radiation Entropy

Using U = aT4V and P = u/3, can solve for

radiation entropy

Srad =
4

3
aT3 V (45)

and thus entropy density srad(T) = S/V = 4/3 aT3

if entropy Srad constant in a parcel of radiation

→ adiabatic process:

Tadiabat ∝ V −1/3 (46)

Padiabat ∝ T4
adiabat∝ V −4/3 (47)

writing P ∝ V −γ, we have

an adiabatic index γrad = 4/3

Q: but how do we get the radiation constant a?
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Blackbody Photon Occupation Number

at a fixed temperature T and frequency ν

we want the distribution function f , i.e., the occupation number

i.e., the average number of photons with frequency ν

Boltzmann: probability of having state n of energy En

proportional to pn = e−En/kT

Planck: n photons have En = nhν, so pn = e−nx

with x = hν/kT

So average number is

f = 〈n〉 =

∑

n npn
∑

n pn
=

∑

n ne−nx

∑

n e−nx
(48)

2
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note that
∑

n ne−nx = −∂x
∑

n e−nx, so

f = −∂x ln

(
∑

n
e−nx

)

(49)

but geometric series has sum

∑

n
e−nx =

∑

n
(e−x)n =

1

1− e−x
(50)

and thus

f = −∂x ln
1

1− e−x
= ∂x ln(1− e−x) (51)

=
e−x

1− e−x
(52)

which gives

f(ν, T) =
1

ehν/kT − 1
(53)

which was to be shewn
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Average Energy per Blackbody Photon

only one way to form an energy

→ expect 〈E〉 ∼ kT ; exact result:

〈E〉 ≡
u(T)

n(T)
(54)

=
π4

30ζ(3)
kT = 2.701 kT (55)

c.f. nonrelativistic ideal gas: 〈E〉idealgas = 3/2kT

note: blackbody radiation has

P

n kT
=

〈E〉

3
= 0.900 (56)

c.f. nonrelativistic ideal gas: Pidealgas/nidealgaskT = 1

2
9



Average Entropy per Blackbody Photon

mean entropy per photon:

entropy has units of Boltzmann’s k

→ expect 〈S〉 ∼ k; exact result

〈S〉 =
s(T)

n(T)
=

4u(T)/3T

n(T)
=

4

3

〈E〉

T
= 3.601 k (57)

temperature independent!

c.f. nonrelativistic ideal gas: entropy per particle

given by Sackur-Tetrode equation

sidealgas
nidealgas

= k

[

5

2
− ln

(

n

(2πmkT/h)3/2

)]

(58)

nearly constant, but through logarithm term

weakly depends on T and density n
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