Astronomy 501: Radiative Processes Lecture 7 Sept 7, 2022

Announcements:

• Problem Set 2 due this Friday Sept 9

• Office hours: BDF after class or by appointment TA: tomorrow 11:30 am - 12:30 pm

• Great to see grads and hear grad questions at Colloquium! *Q: key speaker point straight out of A501?*

Last time: blackbody radiation

Q: blackbody total intensity B(T)? flux F? energy density u(T)?

 $_{\mu}$ Q: for what ν is $B_{\nu} = 0$? but...?

blackbody specific and total/integrated values

intensity
$$B_{\nu}(T) = \frac{2h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
 (1)

$$B(T) = \frac{2\pi^4}{15} \frac{k^4 T^4}{c^3 h^3} = \frac{\sigma}{\pi} T^4 = \frac{c}{4\pi} a T^4 \qquad (2)$$

flux
$$F_{\nu}(T) = \pi B_{\nu}(T) = \frac{2\pi h}{c^2} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
 (3)

$$F(T) = \pi B(T) = \frac{2\pi^5 k^4 T^4}{15 c^2 h^3} \equiv \sigma T^4 \qquad (4)$$

energy density
$$u_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{c} = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{h\nu/kT} - 1}$$
 (5)

$$u(T) = \frac{8\pi^5}{15} \frac{k^4}{c^3 h^3} T^4 \equiv a T^4 = \frac{4\sigma}{c} T^4 \quad (6)$$

▷ Q: to order of magnitude: total number density? hint: $[hc] = [energy \times length]$ mean number density: dimensions $[n] = [\text{length}^{-3}]$ can only depend on T, and physical constants h, c, kcan form only one length: [hc/kT] = [length] $\rightarrow \text{expect } n \sim (hc/kT)^3$

photon number density

$$n_{\nu}(T) = \frac{4\pi B_{\nu}(T)}{hc\nu} = \frac{8\pi}{c^3} \frac{\nu^2}{e^{h\nu/kT} - 1}$$
(7)
$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3$$
(8)

where $\zeta(3) = 1 + 1/2^3 + 1/3^3 + 1/4^3 + \dots = 1.2020569\dots$

Q: implications?

ω

blackbody photon number density

$$n(T) = 16\pi\zeta(3) \left(\frac{kT}{hc}\right)^3 \tag{9}$$

i.e., $n \propto T^3$

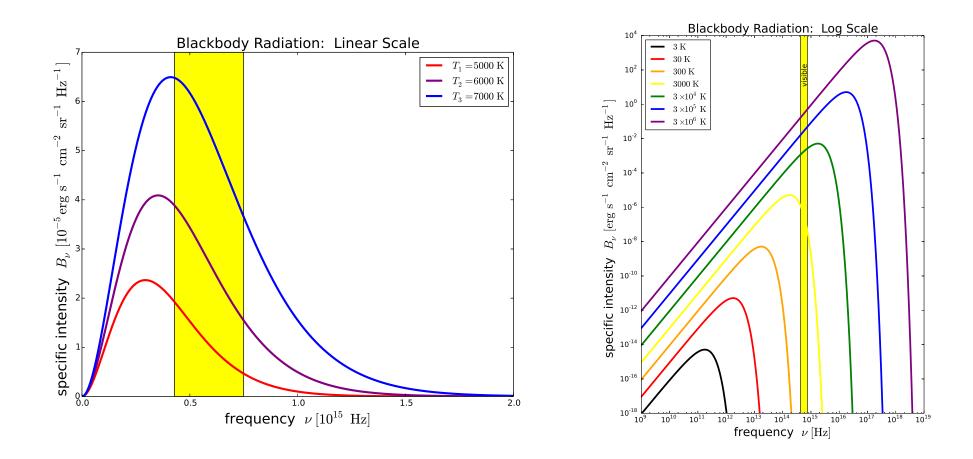
So if temperatures changes, photon number changes blackbody photon number is not conserved photons massless \rightarrow can always make more!

if heat up, photon number increases and spectrum relaxes to blackbody form

alternatively: given energy density $u \sim T^4$

▶ and mean photon energy $\langle E \rangle \sim kT$ number density must be $n \sim T^3$

Blackbody Spectral Properties



С

plots of B_{ν} vs ν Q: what strikes you?

Blackbody Spectral Properties

at fixed ν , occupation number $\partial_T f(\nu, T) > 0$

- \rightarrow at larger T: larger f and so more photons
- \rightarrow also more specific intensity, flux, energy density
- \rightarrow slogan: "blackbody spectra at different T never cross"

natural energy scale kT, sets two limits

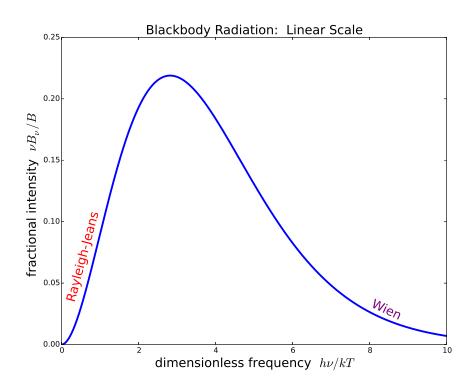
Rayleigh-Jeans limit $h\nu \ll kT$

occupation number $f(
u)
ightarrow kT/h
u \gg 1$

many photons, expect classical behavior specific intensity $I_{\nu}=2h/c^2~\nu^3 f \rightarrow 2kT\,\nu^2/c^2$

- $I_{\nu} \propto \nu^2$: power-law scaling
- h does not appear in I_{ν} : classical behavior!

σ



Wien limit $h\nu \gg kT$

occupation number $f(\nu) \rightarrow e^{-h\nu/kT} \ll 1$

photon starved: thermal bath cannot "pay energy cost" specific intensity $I_{\nu} \rightarrow 2h \nu^3/c^2 \ e^{-h\nu/kT}$

• exponentially damped due to quantum effects

Brightness Temperature

at each ν , blackbody $B_{\nu}(T)$ unique for each $T \rightarrow$ for resolved blackbody, measured B_{ν} gives T!

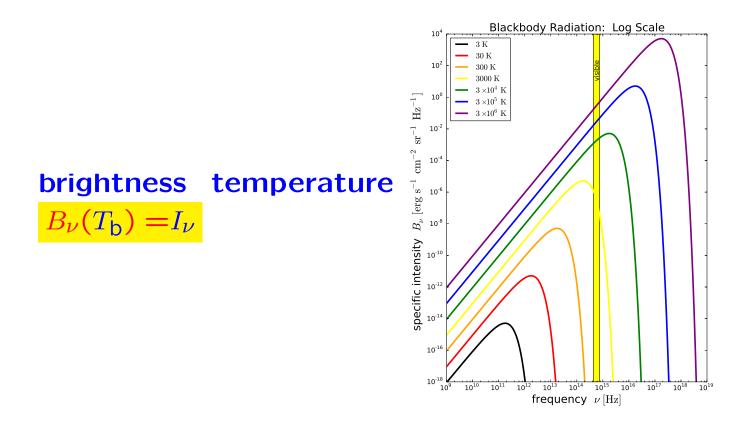
invert to define **brightness** / antenna temperature

$$B_{\nu}(T_{b}) = I_{\nu} \qquad (10)$$

$$T_{b}(\nu) = \frac{h\nu/k}{\ln\left(\frac{2h\nu^{3}}{c^{2}I_{\nu}} + 1\right)} \qquad (11)$$

$$h\nu \ll kT \quad \frac{c^{2}}{2k} \frac{I_{\nu}}{\nu^{2}} \qquad (12)$$

note: defined for all I_{ν} even if not blackbody! $_{\infty}$ another way of characterizing intensity



Q: why is this useful? Q: what does it mean for a nonthermal source?

Q

- www: famous discovery
- www: modern T_{b} results plotted

Wien's Displacement Laws

for blackbodies, specific intensity, and flux, and energy density have

$$I_{\nu} \propto F_{\nu} \propto u_{\nu} \propto \frac{\nu^3}{e^{h\nu/kT} - 1}$$
(13)

at fixed T, these spectra all peak at same frequency

maximum when $x = h\nu/kT$ satisfies $x = 3(1 - e^{-x})$ $\rightarrow x_{\text{max}} = 2.821439...$, which gives

10

$$\frac{\nu_{\rm max}}{T} = x_{\rm max} \frac{k}{h} = 5.88 \times 10^{10} \text{ Hz K}^{-1}$$
(14)
i.e., $\nu_{\rm max} \propto T$, as expected from dimensional analysis

in wavelength space, $I_\lambda \propto \lambda^{-5}/(e^{hc/\lambda kT}-1)$

maximum when $y = hc/\lambda kT$ satisfies $y = 5(1 - e^{-y})$ $\rightarrow y_{max} = 4.9651...$, which gives

$$\lambda_{\max} T = \frac{1}{y_{\max}} \frac{hc}{k} = 0.290 \text{ cm K}$$
(15)

i.e., $\lambda_{\max} \propto 1/T$, as expected from dimensional analysis

both versions of Wien's Law measure T: color temperature

crucial gotcha: **beware!** $\lambda_{max} \neq c/\nu_{max}$ *Q: why?*

Thermal Radiation Transfer

Consider a cavity in thermodynamic equilibrium

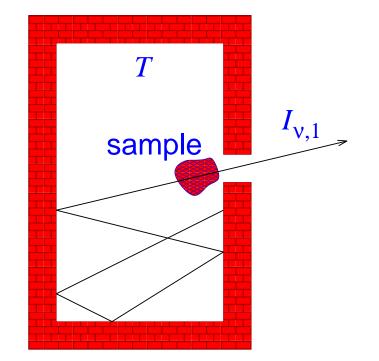
place *small sample of matter* in cavity

along peephole sightline note: "sample," most generally:

- *not* necessarily large
- *nor* optically thick!

12

 and might contain free ions, and/or bound states (atoms and molecules)



allow system to come into thermodynamic equilibrium at ${\cal T}$

Q: effect on I_{ν} emerging from peephole? Q: implications? matter sample will emit and absorb radiation according to its detailed composition, and according to its state at T (i.e., ion, atom, molecule) \Rightarrow absorption $\alpha_{\nu}(T)$ and emission $j_{\nu}(T)$ both characteristic of the matter, not universal!

But in cavity+sample system, there is thermal equilibrium \rightarrow must still be blackbody emitter! \rightarrow emitted radiation must have $I_{\nu,out} = B_{\nu}(T)$

Yet radiation *incident* on sample in cavity already was blackbody: $I_{\nu,in} = B_{\nu}(T)$

specific intensity change through sample

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}(I_{\nu} - S_{\nu}) \tag{16}$$

 $\overline{\omega}$ Q: so what condition required for ray to maintain $I_{\nu,\text{in}} = I_{\nu,\text{out}} = B_{\nu}(T)$ through sample?

Kirchhoff's Law for Thermal Emission

blackbody radiation $B_{\nu}(T)$ must remain unchanged when traversing arbitrary matter with temperature T \Rightarrow demands that all matter at T has source function

$$S_{\nu}(T) = B_{\nu}(T) \tag{17}$$

Kirchhoff's Law for thermal emission

Physically: equilibrium forces emission-absorption relation:

$$j_{\nu} = \alpha_{\nu} \ B_{\nu}(T) \tag{18}$$

Consequences:

- a good (poor) emitter is a good (poor) absorber
- *thermal* emission has $S_{\nu} = B_{\nu}(T)$ and has

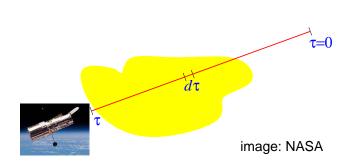
$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + B_{\nu} \tag{19}$$

14

Q: so when will thermal source have blackbody spectrum?

thermal source has $S_{\nu}(T) = B_{\nu}(T)$ as seen in the PS1 Olber's problem! and so transfer equation becomes

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + B_{\nu}$$



but since $B_{\nu}(T)$ is homogeneous, isotropic if no background source, then $I_{\nu}(0) = 0$, and solution is

$$I_{\nu}(s) = \left(1 - e^{-\tau_{\nu}(s)}\right) B_{\nu}(T)$$
 (20)

- if optically thin, then observe $I_{\nu} \approx \tau_{\nu} B_{\nu}(T) = j_{\nu}(T) \Delta s$ intensity not blackbody, and depends on emitter physics www: Cas A X-ray spectrum (Chandra) Q: what is Cas A?
- if optically thick, then $I_{\nu} \rightarrow B_{\nu}$ as seen in PS1 intensity relaxes to emitter-independent blackbody radiation

Build Your Toolbox: Imaging

Questions to ask about resolved astronomical images:

Q: what does it mean to be resolved?

Q: what questions to ask?

Q: how to answer?

Toolbox: Imaging

resolved images:

- angular size > angular resolution
- surface brightness I_{ν} observable

Questions to ask

- What wavebands are in image?
- is the source optically thin or thick at these ν ? **optically thick**: image shows surface $I_{\nu} \rightarrow S_{\nu} = j_{\nu} \ell_{mfp,\nu}$ at surface $\rightarrow B_{\nu}(T_{surf})$ if thermal equilib **optically thin**: measure volume in projection $I_{\nu} \approx j_{\nu} \ \delta s$

 $\stackrel{t_{i}}{\neg}$ Q: How to tell if thermal object is optically thick/thin?

Thermal Emitter: Thick or Thin?

How to tell if a thermal emitter is optically thick/thin? Or: is $I_{\nu} = S_{\nu} = B_{\nu}(T)$ for some T?

If resolved: measure I_{ν} , find brightness temperature $T_{\rm b}(\nu)$ over multiple ν or colors if blackbody: uniform $T_{\rm b} = T$ across colors gives thermodynamic temperature of surface otherwise: spectrum nonthermal, not all emission optically thick

If unresolved: non-trivial! Measure F_{ν}^{obs}

- use spectral info: is $F_{\nu}^{\text{obs}} \propto F_{\nu}(T)$ for some T?
- if so: dominated by optically thick emission at one ${\cal T}$

18

Resolved Blackbody: Temperature Map

Imagine we are observing an optically thick thermal object

- That is: we observe blackbody radiation
- but make broadband observations not a spectrum

if the object is **resolved**:

19

- total intensity $B(T) = \sigma T^4 / \pi$ uniquely fixed by T
- a map of surface brightness is a map of temperature! www: canine and lunar examples

Now imagine the object is **unresolved**

Q: how to determine *T* with F_{ν} spectrum?

Q: how to determine T with based on total (bolometric) lumi- nosity?

Other Temperature Measures: Unresolved Sources

unresolved: measure spectrum or just broadband/total flux

with spectrum F_{ν}^{obs} vs ν : color temperature

• better: fit to blackbody $F_{\nu}(T)$ for different Tbest fit gives $T_{\rm obs}$ quick and dirty: find peak of spectrum use Wien's law to go from $\nu_{\rm max}$ to T

with total flux F^{obs}: effective temperature

- with distance to object, and infer luminosity $L = 4\pi r^2 F$
- from this and radius R infer surface flux $F_{surf} = L/4\pi R^2 \sigma$
- effective temperature: $F_{surf} = \sigma T_{eff}^4$, so

$$T_{\rm eff} = \left(\frac{r}{R}\right)^{1/2} \left(\frac{F_{\rm obs}}{\sigma}\right)^{1/4}$$

20

Build Your Toolbox: Blackbody Radiation

emission physics: matter-radiation interactions

- Q: physical conditions for blackbody radiation?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of blackbody radiation *Q: what do we expect to emit blackbody radiation? Q: relevant temperatures? EM bands?*

Toolbox: Blackbody Radiation

emission physics

- physical conditions: *optically thick* objects *in thermodynamic equilibrium*
- physical sources: solids, dense liquids or gasses
- spectrum: continuum. nonzero at all frequencies single peak at $h\nu = 2.82kT$ (Wien's law) power law $I_{\nu} \sim \nu^2 T$ for $h\nu \ll kT$ exponentical cutoff $I_{\nu} \sim \nu^3 e^{-h\nu/kT} h\nu \gg kT$

astrophysical sources of blackbody radiation

- emitters: solids: dust, asteroids, planets, compact objects stars, some disks, the Universe
- \aleph temperatures: spans 3K to at least 10⁹ K
 - EM bands: microwave to MeV (and above?)

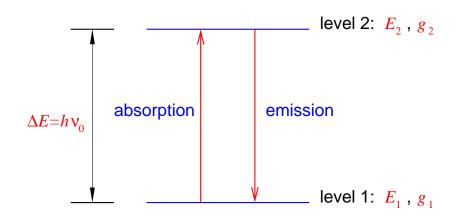
Lines: Two-Level Systems

Two-Level Systems in Radiative Equilibrium

consider an ensemble of systems ("atoms") with

- two discrete energy levels E_1, E_2
- and degeneracies g_1, g_2

i.e., a number g_1 of distinct states have energy E_1



in thermodynamic equilibrium at T, emission and absorption exchange energy with photon field

24

- *Q*: when & why emit? absorb?
- Q: connection between emission, absorption rates in ensemble?

Spontaneous Emission

in general, atoms in states with higher energy E_2 will *decay* to lower level E_1 photon of energy $\Delta E = E_2 - E_1 = h\nu_0$ will be emitted

transition can occur without influence of other atoms, photons **spontaneous emission**: $X_2 \rightarrow X_1 + h\nu$

spontaneous emission rate per atom is $E_2 \rightarrow E_1$ transition rate per atom:

transition probability per unit time per atom = A_{21} (21)

- "Einstein A" coefficient
- units $[A_{21}] = [\sec^{-1}]$

25

- spontaneous: A_{21} independent of T
- but A_{21} does depend on detailed atom properties

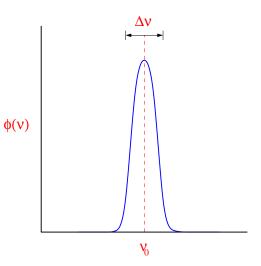
Absorption

atoms in lower state E_1 only promoted to state E_2 by absorbing a photon of energy ΔE $h\nu + X_1 \rightarrow X_2$

if levels were perfectly sharp, absorb only at $\Delta E = h\nu_0$ but in general, energy levels have *finite width* i.e., *line energies "smeared out*" by some amount $h \Delta nu$ so transitions can be made by photons with frequencies $\nu_0 - \Delta \nu \lesssim \nu \lesssim \nu_0 + \Delta \nu$

useful to define line profile function $\phi(\nu)$ with normalization $\int \phi(\nu) \ d\nu = 1$ e.g., Gaussian, Lorentzian, Voight functions

^b limiting case of sharp levels
$$\Delta \nu \rightarrow 0$$
:
 $\phi(\nu) \rightarrow \delta(\nu - \nu_0)$



absorptions require ambient photons

thus absorption rate per atom *depends on photon field* and ensemble *average absorption rate* depends on average intensity

$$\bar{J} \equiv \int \phi(\nu) \ J_{\nu} \ d\nu \tag{22}$$

limiting case of sharp levels: $\overline{J} \to J_{\nu_0}$

thus write average absorption rate as

transition probability per time per atom $= B_{12}\overline{J}$ (23)

- "Einstein *B* coefficient"
- B_{12} is probability per time per intensity
- \aleph depends on atom and state details
 - but does not depend on T

Stimulated Emission

Einstein postulated a new emission mechanism: *driven by* photons with transition energy $\nu_0 - \Delta \nu \lesssim \nu \lesssim \nu_0 + \Delta \nu$ $h\nu + X_2 \rightarrow X_1 + 2h\nu$

I.e., the presence of transition photons creates "peer pressure" "encourages" atoms in higher state to make transition faster than they would spontaneously: **stimulated emission** plausible? yes-photons interact with and perturb atoms

if stimulated emission exists, should also depend on \overline{J} \rightarrow rate per atom is

transition probability per time per atom $= \frac{B_{21}\bar{J}}{2}$ (24)

• note stimulated emission coefficient B_{21} can be *different from* absorption coefficient B_{12}

28

• if stimulated emission doesn't happen, would find $B_{21} = 0$