
Astronomy 501: Radiative Processes

Lecture 9

Sept 12, 2022

Announcements:

• Problem Set 3 due Friday

Last time: radiative properties of a two-level system

Q: emission processes? absorption? what do they depend on?
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2-level system

two states: energies E1, E2

degeneracies g1, g2

, 

E=h∆ ν0

emissionabsorption

2

1 g 1

E

E , level 1:

level 2: g 2

absorption depends on local radiation field

transition probability per time per atom = B12J̄ (1)

spontaneous emission independent of local conditions

transition probability per unit time per atom = A21 (2)

stimulated emission “peer pressure” by local radiation field

transition probability per time per atom = B21J̄ (3)2



Two-Level Systems: Thermal Radiation

Now consider the two-level atom as a radiating system

What are the emission and absorption coefficients?

Emission Coefficient

spontaneous emission rate per atom in state 2: A21

→ rate per volume: n2A21

→ total power emitted per volume: hν0 n2A21

emission isotropic → power per volume per solid angle:

hν0 n2A21/4π Q: why?

but still need frequency spectrum

of emitted radiation, i.e., emission profile

Q: simplest assumption?
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simplest assumption (generally accurate):

→ emission spectrum profile = absorption profile φ(ν)

and thus energy released in spontaneous emission is

dE =
hν0
4π

n2A21φ(ν) dV dt dν dΩ (4)

and thus the emission coefficient is

jν =
hν0
4π

n2A21φ(ν) (5)
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absorption coefficient

absorption rate per atom in level 1: B12J̄

thus energy absorbed is

dE =
hν0
4π

n1B12J̄ dV dt (6)

but 4πJ̄ =
∫

dΩ
∫

Iνφ(ν) dν, so

dE =
hν0
4π

n1B12Iνφ(ν) dV dt dΩ dν (7)

recall: path element ds in area dA has volume dV = ds dA and

so we find absorption coefficient

αabs,ν =
hν0
4π

n1B12φ(ν) (8)

...but we are not done! Q: because...?
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stimulated emission

tempting to include this as additional emission term

but wait! stimulated emission depends on (average) intensity

→ formally more similar to absorption

formally better to treat stimulated emission as

a negative absorption term:

αstim,ν = −hν0
4π

n2B21φ(ν) (9)

and then (net) absorption coefficient

αν = αabs,ν + αstim,ν (10)

=
hν0
4π

φ(ν) (n1B12 − n2B21) (11)6



Two-Level Radiation Transfer

Transfer equation for two-level atom

dIν

ds
= −hν0

4π
φ(ν) (n1B12 − n2B21) Iν +

hν0
4π

n2A21φ(ν) (12)

source function

Sν =
n2A21

n1B12 − n2B21
(13)

Einstein relations give

αν =
hν0
4π

φ(ν) n1B12

(

1− n2

n1

g1
g2

)

(14)

Sν =
2hν3/c2

(n1/n2)(g2/g1)− 1
(15)

a generalization of Kirchhoff’s laws

these do not assume thermal equilibrium!

Q: interesting cases?
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Local Thermodynamic Equilibrium

if atom levels are in thermodynamic equilibrium

then we have n1/n2 = (g1/g2)e
hν/kT and

Sν =
2hν3/c2

ehν/kT − 1
= Bν(T) (16)

we recover the usual Kirchhoff’s law! as we must!

and absorption term becomes

αν =
hν0
4π

φ(ν) n1B12

(

1− e−hν/kT
)

(17)

i.e., “uncorrected” term minus stimulated emission correction

What if not in thermodynamic equilibrium?

then n2/n1 6= Boltzmann expression

emission is nonthermal
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Kirchhoff’s Laws in Action

Consider matter including 2-level system

∆E = hν0, in equilibrium at T

thick
Tthin T

thick
source

thin source

Q: What spectrum if optically thin (and not backlit)?

Q: What spectrum if optically thick (and no foreground matter)?

Q: astro examples?
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Kirchhoff: Single Source

Kirchhoff: thermal source has jν(T) = αν(T) Bν(T)

2-level: jν ∝ αν ∝ τν ∝ φ(ν) line profile

single source at T

• optically thin: Iν = jν(T) δs

see line at ν0 in emission

thick
Tthin T

thick
source

thin source

• optically thick: Iν = Sν = Bν blackbody, Planck function

Now consider same matter, but

• optically thick source at Tthick
• enshrouded by optically thin source at Tthin

Q: spectrum seen only through thin source?

Q: spectrum thru thick source if Tthick > Tthin? if Tthick > T thin?

Q: astro examples of each case?
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two sources at Tthick and Tthin
• thin source only: emission line spectrum

• for thin source backlit by thick:

thick
Tthin T

thick
source

thin source

Iν ≈ (1− τν) Bν(Tthick) + τνBν(Tthin) (18)

= Bν(Tthick) + τν [Bν(Tthin)−Bν(Tthick)] (19)

• ν 6= ν0: Iν ≈ Bν(Tthick)

observe Planck continuum of thick source

• around ν0: Tthick > Tthin gives absorption line in continuum

Tthick < Tthin gives emission line above continuum

www: examples1
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Inverted Populations

two-level absorption coefficient is:

αν =
hν0
4π

φ(ν) n1B12

(

1− n2

n1

g1
g2

)

(20)

note that the algebraic sign

depends on population levels, i.e., on n2/n1

normally, lower level more populated: n1 > n2

If we can arrange or stumble upon a system where
n1

g1
<

n2

g2
(21)

i.e., an inverted population, then αν < 0!

Q: and then what happens to propagating light?

Q: examples?

Q: how might we arrange an inverted population?
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Masers

if αν < 0, then propagating light has

exponential increase in intensity!

stimulated emission causes a “cascade” of photons

in lab: create inverted populations of atoms

use mirrors to “recycle” stimulating photons

→ this is a laser! light amplification by stimulated emission of radiation

in cosmos: inverted populations of molecules

maser: microwave amplification by stimulated emission of radiation

how to create inversion?

need nonthermal mechanism to “pump” upper level

1
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Scattering

1
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Pure Scattering

Consider an idealized case with radiation propagating

through a medium with “pure scattering,” i.e.,

scattering, but no emission, and no absorption

Recall: intensity in a ray is a directional quantity

i.e., really Iν = Iν(θ, φ) = Iν(n̂),

with n̂ a unit vector toward (θ, φ)

in general: scattering preserves photon number

but redistributes both

• photon energy

• photon direction

generally, scattering is different for different incident

and scattered angles, i.e., anisotropic

this is generally is (very) non-trivial to calculate
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but consider even more special case:

• isotropic scattering:

no preferred direction for scattered photons

• photon energy unchanged (“coherent scattering”)

good approximation for scattering by non-relativistic e

define scattering coefficient ςν = nscatσscat,ν,

and thus also scattering cross section σscat, such that

intensity lost to scattering out of ray is

dIν = −ςν Iν ds (22)

isotropic scattering → ςν same for all directions

Q: what is intensity scattered into the ray?1
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Isotropic Coherent Scattering

intensity scattered out of ray Iν(n̂) is

dIν(n̂) = −ςν Iν(n̂) ds (23)

if scattering isotropic, the portion into n̂ is

dIν(n̂) =
dΩ′

4π

∣

∣

∣dIν(n̂
′)
∣

∣

∣ (24)

and so integrating over all possible solid dΩ′ gives

dIν(n̂) =
ςν

4π

∫

Iν dΩ ds = ςν Jν ds (25)

where Jν is the angle-averaged intensity

1
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and thus for isotropic coherent scattering

dIν(n̂)

ds
= −ςν [Iν(n̂)− Jν] (26)

and so the source function is

Sν = Jν (27)

and the transfer equation can be written

dIν(n̂)

dτν
= −Iν(n̂) + Jν (28)

where mean flux Jν =
∫

Iν(n̂′)dΩ′/4π, and dτν = ςν ds

Q: why is this intuitively correct?

Q: what is effect on Iν of many scattering events?
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for coherent, isotropic scattering:

dIν(n̂)

dτν
= −Iν(n̂) + Jν (29)

depends on Iν field in all directions

⇒ scattering couples intensity in different directions

if many scattering events, τν large: Iν → Jν

after large number of mean free paths, photons → isotropic

⇒ (isotropic) scattering randomizes photon directions

reduces anisotropy

transfer with scattering: integro-differential equation

generally very hard to solve!

Q: transfer equation modification for anisotropic scattering?
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Scattering and Random Walks

Can we understand photon propagation with isotropic scattering

in a simple physical picture?

simple model: random walk

between collisions, photons move in straight “steps”

with random displacement ℓ̂

position after N collisions (“steps”) is ~rN

idealizations:

• step length uniform: |ℓ̂| = ℓmfp mean free path

• step direction random: each ℓ̂ drawn from isotropic distribution

and independent of previous steps

• initial condition: start at center, ~r0 = 0

2
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1. first step ~r1 = ℓ̂

length |~r1| = ℓmfp, direction random

average over ensemble of photons:

• 〈~r1〉 = 0

•
〈

r21

〉

= ℓ2mfp

average positions for ensemble of photons is zero

but average distance of each photon ℓmfp

2. step N has: ~rN = ~rN−1 + ℓ̂

average over ensemble of photons:

〈~rN〉 = 〈

~rN−1
〉

+
〈

ℓ̂
〉

=
〈

~rN−1
〉

but by recursion

〈~rN〉 = 〈

~rN−1
〉

=
〈

~rN−2
〉

= . . . = 〈~r1〉 = 0 (30)

→ ensemble average of photons displacements still 0

as it must be by symmetry
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but what about mean square displacement?

r2N = ~rN · ~rN (31)

= r2N−1 +2ℓ̂ · ~rN−1 + ℓ2mfp (32)

average over photon ensemble
〈

r2N

〉

=
〈

r2N−1

〉

+2
〈

ℓ̂ · ~rN−1

〉

+ ℓ2mfp (33)

Q: what is
〈

ℓ̂ · ~rN−1

〉

?

2
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〈

r2N

〉

=
〈

r2N−1

〉

+2
〈

ℓ̂ · ~rN−1

〉

+ ℓ2mfp (34)

each photon scattering direction independent from previous
〈

ℓ̂ · ~rN−1

〉

= ℓmfprN−1 〈cos θ〉 = 0

so
〈

r2N

〉

=
〈

r2N−1

〉

+ ℓ2mfp

but this means
〈

r2N

〉

= Nℓ2mfp

→ each photon goes r.m.s. distance

rrms =

√

〈

r2N

〉

=
√
N ℓmfp (35)

so imagine photons generated at r = 0

and, after scattering, are observed at distance L

Q: number N of scatterings if optically thin? thick?
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Photon Random Walks and Optical Depth

if travel distance L by random walk

then after N scatterings L =
√
N ℓmfp

but photon optical depth is τ = L/ℓmfp

→ counts number of mean free paths in length L

optically thick: τ ≫ 1

many scattering events → this is a random walk!

N
thick≈ τ2

if optically thin: τ ≪ 1

scattering probability 1− e−τ ≈ τ ≪ 1: not random walk!

mean number of scatterings over L is N
thin≈ τ

approximate expression good for all τ

N ≈ τ + τ2 (36)
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Combined Scattering and Absorption

generally, matter can both scatter and absorb photons

transfer equation must include both

for coherent isotropic scattering of thermal radiation

dIν

ds
= −αν(Iν −Bν)− ςν(Iν − Jν) (37)

giving a source function

Sν =
ανBν + ςνJν

αν + ςν
(38)

a weighted average of the two source functions

thus we can write

dIν

ds
= −(αν + ςν)(Iν − Sν) (39)

with extinction coefficient αν + ςν
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generalize mean free path:

ℓmfp,ν =
1

αν + ςν
(40)

average distance between photon interactions

in random walk picture:

probability of step ending in absorption

ǫν ≡ ανℓmfp,ν =
αν

αν + ςν
(41)

and thus step scattering probability

ςνℓmfp,ν =
ςν

αν + ςν
= 1− ǫν (42)

also known as single scattering albedo

source function:

Sν = ǫνBν + (1− ǫν)Jν (43)
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Random Walk with Scattering and Absorption

in infinite medium: every photon created is eventually absorbed

typical absorption path ℓabs,ν = 1/αν

typical number of scattering events until absorption is

Nscat =
ℓabs,ν

ℓmfp,ν
=

ςν + αν

αν
=

1

ǫν
(44)

so typical distance traveled between creation and absorption

ℓ∗ =
√

Nscatℓmfp,ν =
√

ℓabs,νℓmfp,ν =
1

√

αν(αν + ςν)
(45)

diffusion/thermalization length or effective mean free path

What about a finite medium of size s?
define optical thicknesses τscat = ςνs, τabs = αν s

and τ∗ = s/ℓ∗ = τ
1/2
scat(τscat + τabs)

1/2

Q: expected behavior if τ∗ ≪ 1? τ∗ ≫ 1?
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τ∗ = s/ℓ∗: path in units of photon travel

until absorption

τ∗ ≪ 1: effectively thin or translucent

photons random walk by scattering, seen before absorption

luminosity of thermal source with volume V is

Lν
thin
= 4πανBνV = 4πjν(T)V (46)

τ∗ ≫ 1: effectively tick

thermally emitted photons scattered then absorbed before seen

expect Iν → Sν → Bν

rough estimate of luminosity of thermal source:

most emission from “last scattering” surface of area A

where photons travel s = ℓ∗

Lν
thick≈ 4πανBνℓ∗A ≈ 4π

√
ǫν BνA (47)
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