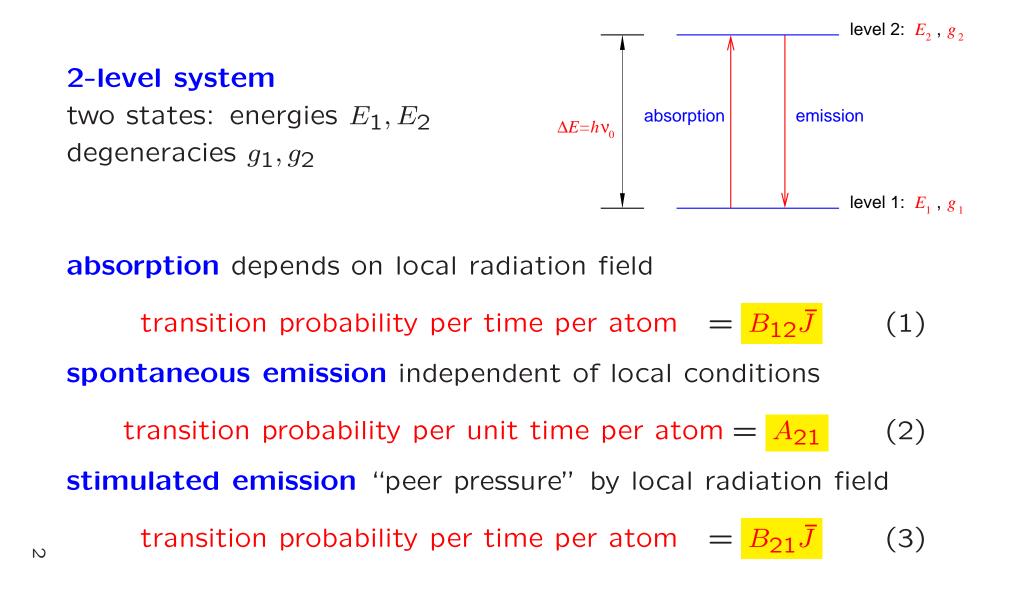
Astronomy 501: Radiative Processes Lecture 9 Sept 12, 2022

Announcements:

• Problem Set 3 due Friday

Last time: radiative properties of a two-level system *Q: emission processes? absorption? what do they depend on?*



Two-Level Systems: Thermal Radiation

Now consider the two-level atom as a radiating system What are the emission and absorption coefficients?

Emission Coefficient

spontaneous emission rate per atom in state 2: A_{21} \rightarrow rate per volume: n_2A_{21} \rightarrow total power emitted per volume: $h\nu_0 n_2A_{21}$ emission isotropic \rightarrow power per volume per solid angle: $h\nu_0 n_2A_{21}/4\pi$ Q: why?

but still need *frequency spectrum* of emitted radiation, i.e., *emission profile*

ω

Q: simplest assumption?

simplest assumption (generally accurate): \rightarrow emission spectrum profile = absorption profile $\phi(\nu)$

and thus energy released in spontaneous emission is

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_2 A_{21} \phi(\nu) \ dV \ dt \ d\nu \ d\Omega \tag{4}$$

and thus the emission coefficient is

$$j_{\nu} = \frac{h\nu_0}{4\pi} n_2 A_{21} \phi(\nu)$$
 (5)

absorption coefficient

absorption rate per atom in level 1: $B_{12}\overline{J}$ thus energy absorbed is

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_1 B_{12} \bar{J} \ dV \ dt \tag{6}$$

but $4\pi \overline{J} = \int d\Omega \int I_{\nu} \phi(\nu) \ d\nu$, so

$$d\mathcal{E} = \frac{h\nu_0}{4\pi} n_1 B_{12} I_\nu \phi(\nu) \ dV \ dt \ d\Omega \ d\nu \tag{7}$$

recall: path element ds in area dA has volume dV = ds dA and so we find absorption coefficient

$$\alpha_{\text{abs},\nu} = \frac{h\nu_0}{4\pi} n_1 B_{12} \phi(\nu) \tag{8}$$

С

...but we are not done! *Q: because...?*

stimulated emission

tempting to include this as additional emission term

but wait! stimulated emission depends on (average) intensity \rightarrow formally more similar to absorption

formally better to treat stimulated emission as a *negative absorption* term:

$$\alpha_{\text{stim},\nu} = -\frac{h\nu_0}{4\pi} n_2 B_{21} \phi(\nu)$$
 (9)

and then (net) absorption coefficient

$$\alpha_{\nu} = \alpha_{\text{abs},\nu} + \alpha_{\text{stim},\nu} \tag{10}$$

$$= \frac{h\nu_0}{4\pi} \phi(\nu) \quad (n_1 B_{12} - n_2 B_{21}) \tag{11}$$

σ

Two-Level Radiation Transfer

Transfer equation for two-level atom

$$\frac{dI_{\nu}}{ds} = -\frac{h\nu_0}{4\pi}\phi(\nu) \quad (n_1B_{12} - n_2B_{21}) I_{\nu} + \frac{h\nu_0}{4\pi}n_2A_{21}\phi(\nu) \quad (12)$$
 source function

$$S_{\nu} = \frac{n_2 A_{21}}{n_1 B_{12} - n_2 B_{21}} \tag{13}$$

Einstein relations give

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - \frac{n_2 g_1}{n_1 g_2} \right) \tag{14}$$

$$S_{\nu} = \frac{2h\nu^3/c^2}{(n_1/n_2)(g_2/g_1) - 1}$$
(15)

a generalization of Kirchhoff's laws these *do not assume thermal equilibrium!*

Q: interesting cases?

Local Thermodynamic Equilibrium

if atom levels are in thermodynamic equilibrium then we have $n_1/n_2 = (g_1/g_2)e^{h\nu/kT}$ and

$$S_{\nu} = \frac{2h\nu^3/c^2}{e^{h\nu/kT} - 1} = B_{\nu}(T)$$
(16)

we recover the usual Kirchhoff's law! as we must!

and absorption term becomes

 ∞

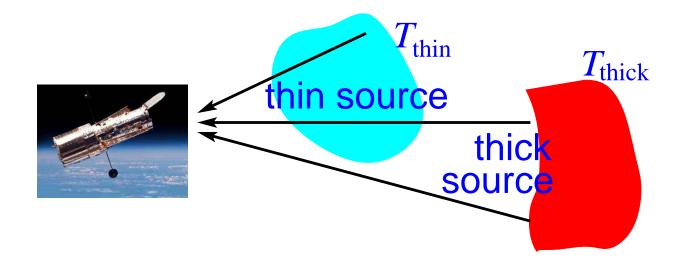
$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - e^{-h\nu/kT} \right) \tag{17}$$

i.e., "uncorrected" term minus stimulated emission correction

What if not in thermodynamic equilibrium? then $n_2/n_1 \neq$ Boltzmann expression emission is nonthermal

Kirchhoff's Laws in Action

Consider matter including 2-level system $\Delta E = h\nu_0$, in equilibrium at T



Q: What spectrum if optically thin (and not backlit)?

Q: What spectrum if optically thick (and no foreground matter)?
 Q: astro examples?

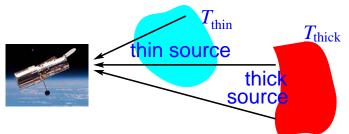
Kirchhoff: Single Source

Kirchhoff: thermal source has $j_{\nu}(T) = \alpha_{\nu}(T) B_{\nu}(T)$ 2-level: $j_{\nu} \propto \alpha_{\nu} \propto \tau_{\nu} \propto \phi(\nu)$ line profile

single source at T

10

• optically thin: $I_{\nu} = j_{\nu}(T) \ \delta s$ see line at ν_0 in emission



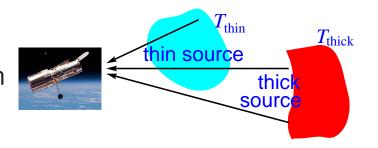
• optically thick: $I_{\nu} = S_{\nu} = B_{\nu}$ blackbody, Planck function

Now consider same matter, but

- optically thick source at T_{thick}
- \bullet enshrouded by optically thin source at $T_{\rm thin}$
- *Q: spectrum seen only through thin source?*
- Q: spectrum thru thick source if $T_{\text{thick}} > T_{\text{thin}}$? if $T_{\text{thick}} > T$ thin?
- Q: astro examples of each case?

two sources at T_{thick} and T_{thin}

- thin source only: emission line spectrum
- for thin source backlit by thick:



$$I_{\nu} \approx (1 - \tau_{\nu}) B_{\nu}(T_{\text{thick}}) + \tau_{\nu} B_{\nu}(T_{\text{thin}}) \qquad (18)$$
$$= B_{\nu}(T_{\text{thick}}) + \tau_{\nu} [B_{\nu}(T_{\text{thin}}) - B_{\nu}(T_{\text{thick}})] \qquad (19)$$

- $\nu \neq \nu_0$: $I_{\nu} \approx B_{\nu}(T_{\text{thick}})$ observe *Planck continuum* of thick source
- around ν_0 : $T_{\text{thick}} > T_{\text{thin}}$ gives absorption line in continuum $T_{\text{thick}} < T_{\text{thin}}$ gives emission line above continuum

 \underline{H} www: examples

Inverted Populations

two-level absorption coefficient is:

$$\alpha_{\nu} = \frac{h\nu_0}{4\pi} \phi(\nu) \ n_1 B_{12} \left(1 - \frac{n_2 g_1}{n_1 g_2} \right) \tag{20}$$

note that the algebraic sign

12

depends on population levels, i.e., on n_2/n_1 normally, lower level more populated: $n_1 > n_2$

If we can arrange or stumble upon a system where

$$\frac{n_1}{g_1} < \frac{n_2}{g_2} \tag{21}$$

i.e., an *inverted population*, then $\alpha_{\nu} < 0!$

Q: and then what happens to propagating light? Q: examples?

Q: how might we arrange an inverted population?

Masers

if $\alpha_{\nu} < 0$, then propagating light has exponential *increase* in intensity!

stimulated emission causes a "cascade" of photons

in lab: create inverted populations of atoms use mirrors to "recycle" stimulating photons \rightarrow *this is a laser!* light amplification by stimulated emission of radiation

in cosmos: inverted populations of molecules maser: microwave amplification by stimulated emission of radiation

a how to create inversion?
 need *nonthermal* mechanism to "pump" upper level

Pure Scattering

Consider an idealized case with radiation propagating through a medium with "*pure scattering*," i.e., scattering, but *no emission*, and *no absorption*

Recall: intensity in a ray is a directional quantity i.e., really $I_{\nu} = I_{\nu}(\theta, \phi) = I_{\nu}(\hat{n})$, with \hat{n} a unit vector toward (θ, ϕ)

in general: scattering preserves photon *number* but *redistributes* both

- photon energy
- photon direction

generally, scattering is different for different incident and scattered angles, i.e., anisotropic

15

this is generally is (very) non-trivial to calculate

but consider even more special case:

- *isotropic* scattering: no preferred direction for scattered photons
- photon energy unchanged ("coherent scattering") good approximation for scattering by non-relativistic e

define scattering coefficient $\varsigma_{\nu} = n_{\text{scat}}\sigma_{\text{scat},\nu}$, and thus also scattering cross section σ_{scat} , such that intensity lost to scattering *out* of ray is

$$dI_{\nu} = -\varsigma_{\nu} \ I_{\nu} \ ds \tag{22}$$

isotropic scattering $\rightarrow \varsigma_{\nu}$ same for all directions

$$Q$$
: what is intensity scattered into the ray?

Isotropic Coherent Scattering

intensity scattered *out* of ray $I_{\nu}(\hat{n})$ is

$$dI_{\nu}(\hat{n}) = -\varsigma_{\nu} I_{\nu}(\hat{n}) ds$$
(23)

if scattering *isotropic*, the portion *into* \hat{n} is

$$dI_{\nu}(\hat{n}) = \frac{d\Omega'}{4\pi} \left| dI_{\nu}(\hat{n}') \right|$$
(24)

and so integrating over all possible solid $d\Omega'$ gives

$$dI_{\nu}(\hat{n}) = \frac{\varsigma_{\nu}}{4\pi} \int I_{\nu} \ d\Omega \ ds = \varsigma_{\nu} \ J_{\nu} \ ds$$
(25)

where J_{ν} is the angle-averaged intensity

and thus for isotropic coherent scattering

$$\frac{dI_{\nu}(\hat{n})}{ds} = -\varsigma_{\nu} \left[I_{\nu}(\hat{n}) - J_{\nu} \right]$$
(26)

and so the source function is

18

$$S_{\nu} = J_{\nu} \tag{27}$$

and the transfer equation can be written

$$\frac{dI_{\nu}(\hat{n})}{d\tau_{\nu}} = -I_{\nu}(\hat{n}) + J_{\nu}$$
(28)

where mean flux $J_{\nu} = \int I_{\nu}(\hat{n}') d\Omega'/4\pi$, and $d\tau_{\nu} = \varsigma_{\nu} ds$

Q: why is this intuitively correct? *Q*: what is effect on I_{ν} of many scattering events? for coherent, isotropic scattering:

$$\frac{dI_{\nu}(\hat{n})}{d\tau_{\nu}} = -I_{\nu}(\hat{n}) + J_{\nu}$$
(29)

depends on I_{ν} field in *all directions*

 \Rightarrow scattering couples intensity in different directions

if many scattering events, $au_{
u}$ large: $I_{
u}
ightarrow J_{
u}$

after large number of mean free paths, photons \rightarrow isotropic \Rightarrow (isotropic) scattering randomizes photon directions reduces anisotropy

transfer with scattering: integro-differential equation generally very hard to solve!

Q: transfer equation modification for anisotropic scattering?

Scattering and Random Walks

Can we understand photon propagation with isotropic scattering in a simple physical picture?

simple model: random walk between collisions, photons move in straight "steps" with random displacement $\hat{\ell}$ position after N collisions ("steps") is \vec{r}_N

idealizations:

- step length uniform: $|\hat{\ell}| = \ell_{mfp}$ mean free path
- step direction random: each $\hat{\ell}$ drawn from isotropic distribution and independent of previous steps
- initial condition: start at center, $\vec{r}_0 = 0$

20

1. first step $\vec{r}_1 = \hat{\ell}$

length $|\vec{r}_1| = \ell_{mfp}$, direction random average over ensemble of photons:

•
$$\langle \vec{r}_1 \rangle = 0$$

•
$$\left\langle r_1^2 \right\rangle = \ell_{\rm mfp}^2$$

average positions for *ensemble* of photons is zero but average distance of *each* photon ℓ_{mfp}

2. step N has: $\vec{r}_N = \vec{r}_{N-1} + \hat{\ell}$ average over ensemble of photons: $\langle \vec{r}_N \rangle = \langle \vec{r}_{N-1} \rangle + \langle \hat{\ell} \rangle = \langle \vec{r}_{N-1} \rangle$ but by recursion

$$\langle \vec{r}_N \rangle = \langle \vec{r}_{N-1} \rangle = \langle \vec{r}_{N-2} \rangle = \ldots = \langle \vec{r}_1 \rangle = 0$$
 (30)

 $\simeq \rightarrow$ ensemble average of photons displacements still 0 as it must be by symmetry

but what about *mean square* displacement?

$$r_N^2 = \vec{r}_N \cdot \vec{r}_N \tag{31}$$

$$= r_{N-1}^2 + 2\hat{\ell} \cdot \vec{r}_{N-1} + \ell_{mfp}^2$$
(32)

average over photon ensemble

$$\left\langle r_{N}^{2}\right\rangle = \left\langle r_{N-1}^{2}\right\rangle + 2\left\langle \hat{\ell}\cdot\vec{r}_{N-1}\right\rangle + \ell_{mfp}^{2}$$
(33)
Q: what is $\left\langle \hat{\ell}\cdot\vec{r}_{N-1}\right\rangle$?

$$\left\langle r_{N}^{2}\right\rangle = \left\langle r_{N-1}^{2}\right\rangle + 2\left\langle \hat{\ell}\cdot\vec{r}_{N-1}\right\rangle + \ell_{mfp}^{2}$$
 (34)

each photon scattering direction independent from previous $\langle \hat{\ell} \cdot \vec{r}_{N-1} \rangle = \ell_{\rm mfp} r_{N-1} \langle \cos \theta \rangle = 0$ so $\langle r_N^2 \rangle = \langle r_{N-1}^2 \rangle + \ell_{\rm mfp}^2$

but this means $\langle r_N^2 \rangle = N \ell_{mfp}^2$ \rightarrow each photon goes r.m.s. distance

$$r_{\rm rms} = \sqrt{\left\langle r_N^2 \right\rangle} = \sqrt{N} \ \ell_{\rm mfp}$$
 (35)

so imagine photons generated at r = 0and, after scattering, are observed at distance L \Im Q: number N of scatterings if optically thin? thick?

Photon Random Walks and Optical Depth

if travel distance L by random walk then after N scatterings $L = \sqrt{N} \ell_{mfp}$ but photon optical depth is $\tau = L/\ell_{mfp}$ \rightarrow counts number of mean free paths in length L

optically thick: $\tau \gg 1$ many scattering events \rightarrow this is a random walk! $N \stackrel{\text{thick}}{\approx} \tau^2$

if optically thin: $\tau \ll 1$ scattering probability $1 - e^{-\tau} \approx \tau \ll 1$: not random walk! mean number of scatterings over L is $N \stackrel{\text{thin}}{\approx} \tau$

 $_{\rm N}$ approximate expression good for all τ

$$N \approx \tau + \tau^2 \tag{36}$$

Combined Scattering and Absorption

generally, matter can both scatter and absorb photons transfer equation must include both for *coherent isotropic scattering* of *thermal radiation*

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}(I_{\nu} - B_{\nu}) - \varsigma_{\nu}(I_{\nu} - J_{\nu})$$
(37)

giving a source function

$$S_{\nu} = \frac{\alpha_{\nu}B_{\nu} + \varsigma_{\nu}J_{\nu}}{\alpha_{\nu} + \varsigma_{\nu}}$$
(38)

a *weighted average* of the two source functions

thus we can write

$$\frac{dI_{\nu}}{ds} = -(\alpha_{\nu} + \varsigma_{\nu})(I_{\nu} - S_{\nu})$$
(39)

25

with extinction coefficient $\alpha_{\nu} + \varsigma_{\nu}$

generalize mean free path:

$$\ell_{\mathsf{mfp},\nu} = \frac{1}{\alpha_{\nu} + \varsigma_{\nu}} \tag{40}$$

average distance between photon interactions

in random walk picture:

probability of step ending in absorption

$$\epsilon_{\nu} \equiv \alpha_{\nu} \ell_{\mathsf{mfp},\nu} = \frac{\alpha_{\nu}}{\alpha_{\nu} + \varsigma_{\nu}} \tag{41}$$

and thus step *scattering probability*

$$\varsigma_{\nu}\ell_{\mathsf{mfp},\nu} = \frac{\varsigma_{\nu}}{\alpha_{\nu} + \varsigma_{\nu}} = 1 - \epsilon_{\nu} \tag{42}$$

also known as single scattering albedo

$$_{\rm N}$$
 source function:

$$S_{\nu} = \epsilon_{\nu} B_{\nu} + (1 - \epsilon_{\nu}) J_{\nu} \tag{43}$$

Random Walk with Scattering and Absorption

in *infinite medium*: every photon created is eventually absorbed typical absorption path $\ell_{abs,\nu} = 1/\alpha_{\nu}$ typical number of scattering events until absorption is

$$N_{\text{scat}} = \frac{\ell_{\text{abs},\nu}}{\ell_{\text{mfp},\nu}} = \frac{\varsigma_{\nu} + \alpha_{\nu}}{\alpha_{\nu}} = \frac{1}{\epsilon_{\nu}}$$
(44)

so typical distance traveled between creation and absorption

$$\ell_* = \sqrt{N_{\text{scat}}} \ell_{\text{mfp},\nu} = \sqrt{\ell_{\text{abs},\nu}} \ell_{\text{mfp},\nu} = \frac{1}{\sqrt{\alpha_{\nu}(\alpha_{\nu} + \varsigma_{\nu})}}$$
(45)

diffusion/thermalization length or effective mean free path

What about a *finite medium* of size *s*? define optical thicknesses $\tau_{scat} = \varsigma_{\nu}s$, $\tau_{abs} = \alpha_{\nu}s$ and $\tau_* = s/\ell_* = \tau_{scat}^{1/2}(\tau_{scat} + \tau_{abs})^{1/2}$

Q: expected behavior if $\tau_* \ll 1$? $\tau_* \gg 1$?

N,

 $\tau_* = s/\ell_*$: path in units of photon travel until absorption

$\tau_* \ll 1$: effectively thin or translucent

photons random walk by scattering, seen before absorption luminosity of thermal source with volume V is

$$L_{\nu} \stackrel{\text{thin}}{=} 4\pi \alpha_{\nu} B_{\nu} V = 4\pi j_{\nu}(T) V \tag{46}$$

$\tau_* \gg 1$: effectively tick

28

thermally emitted photons scattered then absorbed before seen expect $I_\nu\to S_\nu\to B_\nu$

rough estimate of luminosity of thermal source:

most emission from "last scattering" surface of area A where photons travel $s=\ell_*$

$$L_{\nu} \stackrel{\text{thick}}{\approx} 4\pi \alpha_{\nu} B_{\nu} \ell_* A \approx 4\pi \sqrt{\epsilon_{\nu}} B_{\nu} A \tag{47}$$